Número de Fibonacci
Os números Fibonacci são uma seqüência de números em matemática com o nome de Leonardo de Pisa, conhecido como Fibonacci. Fibonacci escreveu um livro em 1202, chamado Liber Abaci ("Livro de Cálculo"), que introduziu o padrão numérico à matemática da Europa Ocidental, embora os matemáticos na Índia já soubessem disso.
O primeiro número do padrão é 0, o segundo número é 1, e cada número depois disso é igual a somar os dois números imediatamente antes dele juntos. Por exemplo, 0+1=1 e 3+5=8. Esta seqüência continua para sempre.
Isto pode ser escrito como uma relação de recorrência,
F n = F n - 1 + F n - 2 {\i1}=F_{n}=F_{n-1}+F_{n-2}}
Para que isto faça sentido, pelo menos dois pontos de partida precisam ser dados. Aqui, F 0 = 0 {\i1}f_{0}=0} e F 1 = 1 {\i}f_{1}=1}
.


Uma espiral de Fibonacci criada desenhando uma linha através dos quadrados no azulejo Fibonacci; esta utiliza quadrados de tamanhos 1, 1, 2, 3, 5, 8, 13, 21, e 34; ver Espiral dourada
Números de Fibonacci na natureza
Os números de Fibonacci estão relacionados com a proporção de ouro, que aparece em muitos lugares nos edifícios e na natureza. Alguns exemplos são o padrão de folhas em um caule, as partes de um abacaxi, a floração de alcachofra, o desenrolar de uma samambaia e o arranjo de uma pinha de pinheiro. Os números Fibonacci também são encontrados na árvore genealógica das abelhas.


Cabeça de girassol exibindo floretes em espiral de 34 e 55 em torno do exterior
A Fórmula Binet
O número nth Fibonacci pode ser escrito em termos da proporção de ouro. Isto evita ter que usar a recorrência para calcular os números Fibonacci, o que pode levar muito tempo para ser feito por um computador.
F n = φ n - ( 1 - φ ) n 5 {\frac ^{n}={\frac ^{n}-(1-\varphi} ^{n}}{\sqrt {5}}}}
Onde φ = 1 + 5 2 {\i1}}displaystyle {\i}varphi ={\i1+{\i}frac {\i}{\i1+{\i}{\i1}{\i1}frac a proporção de ouro.
Perguntas e Respostas
P: Qual é a seqüência de Fibonacci?
R: A seqüência de Fibonacci é um padrão de números em matemática com o nome de Leonardo de Pisa, conhecido como Fibonacci. Ela começa com 0 e 1, e cada número depois disso é igual à soma dos dois números imediatamente antes dela.
P: Quem introduziu esse padrão de números na matemática da Europa Ocidental?
R: Fibonacci escreveu um livro em 1202 chamado Liber Abaci ("Livro de Cálculo"), que introduziu o padrão numérico à matemática da Europa Ocidental, embora os matemáticos na Índia já soubessem disso.
P: Como pode ser escrita a seqüência de Fibonacci?
R: A seqüência de Fibonacci pode ser escrita como uma relação de recorrência, onde F_n = F_n-1 + F_n-2 para n ≥ 2.
P: Quais são os pontos de partida para essa relação de recorrência?
R: Para que isso faça sentido, é preciso dar pelo menos dois pontos de partida. Aqui, F_0 = 0 e F_1 = 1.
P: A seqüência de Fibonacci continua para sempre?
R: Sim, a seqüência prossegue para sempre.
P: Onde os matemáticos aprenderam pela primeira vez sobre esse padrão numérico? R: Os matemáticos na Índia já estavam familiarizados com esse padrão numérico antes de ser introduzido na Europa Ocidental por Leonardo de Pisa (Fibonacci).