Constante matemática
Uma constante matemática é um número, que tem um significado especial para os cálculos. Por exemplo, a constante π (pronuncia-se "torta") significa a relação entre a circunferência de um círculo e seu diâmetro. Este valor é sempre o mesmo para qualquer circunferência. Uma constante matemática é freqüentemente um número real, não integral, de interesse.
Ao contrário das constantes físicas, as constantes matemáticas não provêm de medidas físicas.
Constantes matemáticas chave
A tabela a seguir contém algumas constantes matemáticas importantes:
Nome | Símbolo | Valor | Significado |
Pi, a constante de Arquimedes ou o número de Ludoph | π | ≈3.141592653589793 | Um número transcendental que é a relação entre o comprimento da circunferência de um círculo e seu diâmetro. É também a área da unidade do círculo. |
E, a constante de Napier | e | ≈2.718281828459045 | Um número transcendental que é a base dos logaritmos naturais, às vezes chamado de "número natural". |
φ | 5 + 1 2 ≈ 1.618 1.618 estilo de jogo {\i1}{\i1}+1}{\i1} Aprox. 1.618 | É o valor de um valor maior dividido por um valor menor, se este for igual ao valor da soma dos valores divididos pelo valor maior. | |
Raiz quadrada de 2, a constante de Pitágoras | 2 Estilo de jogo 2 | ≈ 1.414 {\i1}displaystyle Aprox. 1.414 | Um número irracional que é o comprimento da diagonal de um quadrado com lados de comprimento 1. Este número não pode ser escrito como uma fração. |
A tabela a seguir contém uma lista de constantes e séries em matemática, com as seguintes colunas:
- Valor: Valor numérico da constante.
- LaTeX: Fórmula ou série no formato TeX.
- Fórmula: Para uso em programas como o Mathematica ou Wolfram Alpha.
- OEIS: Link para a Enciclopédia On-Line de Seqüências Inteiras (OEIS), onde as constantes estão disponíveis com mais detalhes.
- Fração continuada: Na forma simples [ao inteiro; frac1, frac2, frac3, ...] (entre parênteses, se periódico)
- Tipo:
- R - Número racional
- I - Número irracional
- T - Número Transcendental
- C - Número complexo
Observe que a lista pode ser ordenada de forma correspondente clicando no título do cabeçalho no topo da tabela.
Valor | Nome | Símbolo | LaTeX | Fórmula | Tipo | OEIS | Fração continuada |
3.24697960371746706105000976800847962 | Prata, Tutte-Beraha constante | ς {\i1}displaystyle {\i1}varsigma | 2 + 2 cos ( 2 π / 7 ) = 2 + 2 + 7 + 7 7 + 7 7 + ⋯ 3 3 3 3 1 + 7 + 7 7 + 7 7 + ⋯ 3 3 3 3 {\displaystyle 2+2\cos(2\pi /7)=textstyle 2+{\frac {2+{\sqrt[3}]{7+7{\sqrt[3}]{7+7{\sqrt[3}]{7+7{\sqrt[3}]{\sqrt7+\cdots }}}}}}}{1+{\sqrt[{3}]{7+7{\sqrt[{3}]{7+7{\sqrt[{3}]{\,7+\cdots }}}}}}}}} | 2+2 cos(2Pi/7) | T | A116425 | [3;4,20,2,3,1,6,10,5,2,2,1,2,2,1,18,1,1,3,2,...] |
1.09864196439415648573466891734359621 | Constante de Paris | C P a {\i1}c P a {\i1}displaystyle C_{Pa}} | ∏ n = 2 ∞ 2 φ φ φ + φ n , φ = F i {\i1}displaystyle {\i=2}^{\i}{\i1}frac {\i}{\i1}varphi +\i_varphi _\i};,{\i}varphi ={\i} | I | A105415 | [1;10,7,3,1,3,1,5,1,4,2,7,1,2,3,22,1,2,5,2,1,...] | |
2.74723827493230433305746518613420282 | Ramanujan radical aninhado R5 | R 5 {\i1}- estilo R_{5}} | 5 + 5 + 5 - 5 + 5 + 5 + 5 + 5 - ⋯ = 2 + 5 + 15 - 6 5 2 {\sqrt {\sqrt {5+{\sqrt {5+{\sqrt {5-{\sqrt {5+{\sqrt {5+{\sqrt {5+{\sqrt {5+{\sqrt {5-cdots }}}}}}}}}}}}}}\sqrt=\estilo de texto 2+5+5+5+5+5+5+5}}}}}}}}}}_2 | (2+sqrt(5)+sqrt(15-6 sqrt(5)))/2 | I | [2;1,2,1,21,1,7,2,1,1,2,1,2,1,17,4,4,1,1,4,2,...] | |
2.23606797749978969640917366873127624 | Raiz quadrada de 5, soma de Gauss | 5 Estilo de jogo 5 | ∀ n = 5 , ∑ k = 0 n - 1 e 2 k 2 π i n = 1 + e 2 π i 5 + e 8 π i 5 + e 18 π i 5 + e 32 π i 5 {\i1}estilo de escrita {\i1}para todos {\i},n=5\Displaystyle Sum _{k=0} {n-1}e^frac {2k^{2}pi i}{n}=1+e^frac {2}{5}+e^frac {8pi i}{5}+e^frac {18pi i}{5}+e^frac {32pi i}{5}} | Soma[k=0 a 4]{e^(2k^2 pi i/5)} | I | A002163 | [2;4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,...] |
3.62560990822190831193068515586767200 | Gama(1/4) | Γ ( 1 4 ) Gamma (1) | 4 ( 1 4 ) ! = ( − 3 4 ) ! Estilo de jogo 4 Esquerda(-4 )(1)! } | 4(1/4)! | T | A068466 | [3;1,1,1,2,25,4,9,1,1,8,4,1,6,1,1,19,1,1,4,1,...] |
0.18785964246206712024851793405427323 | MRB constante, Marvin Ray Burns | C M R B {\\i1}}- Estilo C_{_MRB}} | ∑ n = 1 ∞ ( - 1 ) n ( n 1 / n - 1 ) = - 1 1 1 + 2 2 - 3 3 + 4 4 ... {\i1}- estilo de jogo _{n=1}^{\i1}(n {-}1)^{n}(n^{1/n}{-}1)=-{\i1}+{\i[2}]{\i[2}]{2}-{\i[3}]{3}+{\i[4}]{4},pontos | Soma[n=1 a ∞]{(-1)^n (n^(1/n)-1)} | T | A037077 | [0;5,3,10,1,1,4,1,1,1,1,9,1,1,12,2,17,2,2,1,...] |
0.11494204485329620070104015746959874 | constante Kepler-Bouwkamp | ρ | ∏ n = 3 ∞ cos ( π n ) = cos ( π 3 ) cos ( π 4 ) cos ( π 5 ) ... {\i1}prod _{n=3}^{\i1}cos esquerda(frac esquerda (esquerda) (3) (direita) (4) (4) (direita) (5) (5) (esquerda) (5) (esquerda) (5) (direita) (5) | prod[n=3 a ∞]{cos(pi/n)} | T | A085365 | [0;8,1,2,2,1,272,2,1,41,6,1,3,1,1,26,4,1,1,...] |
1.78107241799019798523650410310717954 | Exp(gamma) | e γ e^{\i1}displaystyle e^{\i}gamma | ∏ n = 1 ∞ e 1 n 1 + 1 n = ∏ n = 0 ∞ ( ∏ k = 0 n ( k + 1 ) ( - 1 ) k + 1 ( n k ) ) 1 n + 1 = estilo de jogoprod _{n=1}{infty}{frac {e^{frac {1}{n}}}{1+{frac {1}{n}}}}=prod _{n=0}{infty {k=0}{n}(k+1)^{(-1)^{k+1}{n {k+1}{n ÕÕÕ{n+1}escolha k ( 2 1 ) 1 / 2 ( 2 2 2 1 ⋅ 3 ) 1 / 3 ( 2 3 ⋅ 4 1 ⋅ 3 3 ) 1 / 4 ( 2 4 ⋅ 4 4 1 ⋅ 3 6 ⋅ 5 ) 1 / 5 ... Estilo de texto Estilo de texto Estilo de texto Estilo de texto Estilo de texto Estilo de texto Estilo de texto Estilo de texto Estilo de texto Estilo de texto Estilo de texto Estilo de texto Estilo de texto Estilo de texto Estilo de texto Estilo de texto 2 {2 {2 }{1 {2 }cdot 3 {1 }direita){1/3 {2 {3 {3 }cdot 4 {1 {1 {3 {3 {4 }direita){1/4 {2 {4 {4 {4 {4 }cdot 4 {1 {1 {6 {6 {5 {5 {1 {1}direita){1/5 {1}dots} | Prod[n=1 a ∞]{e^(1/n)}/{1 + 1/n} | T | A073004 | [1;1,3,1,1,3,5,4,1,1,2,2,1,7,9,1,16,1,1,1,2,...] |
1.28242712910062263687534256886979172 | Constante de Glaisher-Kinkelin | Um estilo de jogo | e 1 12 - ζ ′ ( - 1 ) = e 1 8 - 1 2 ∑ n = 0 ∞ 1 n + 1 ∑ k = 0 n ( - 1 ) k ( n k ) ( k + 1 ) 2 ln ( k + 1 ) e^{\i1}-zeta ^{\i}(- - | e^(1/2-zeta'{-1}) | T | A074962 | [1;3,1,1,5,1,1,1,3,12,4,1,271,1,1,2,7,1,35,...] |
7.38905609893065022723042746057500781 | Constante cônica Schwarzschild | e 2 ^2 ^2 ^2 ^2 ^2 ^2 ^2 ^2 ^2 | ∑ n = 0 ∞ 2 n n n ! = 1 + 2 + 2 2 2 ! + 2 3 3 ! + 2 4 4 ! + 2 5 5 ! | Soma[n=0 a ∞]{2^n/n/n!} | T | A072334 | 7;2,1,1,3,18,5,1,1,1,6,30,8,1,1,9,42,11,1,...] |
1.01494160640965362502120255427452028 | Constante de Gieseking | G G i {G_Gi}} | 3 3 3 4 ( 1 - ∑ n = 0 ∞ 1 ( 3 n + 2 ) 2 + ∑ n = 1 ∞ 1 ( 3 n + 1 ) 2 ) = {\i1}{\i1}displaystyle {\i}{\i1}frac {\i}{\i}{\i}{\i}{\i}{\i}{\i}{\i1}frac {\i}{\i}{\i}{\i}{\i}{\i1}frac {\i}{\i}{\i}{\i}{\i1}esquerda 3 3 3 4 ( 1 - 1 2 2 + 1 4 2 - 1 5 2 + 1 7 2 - 1 8 2 + 1 10 2 ± ... ) Estilo de texto Estilo de texto Estilo de texto Estilo de texto Estilo de texto Estilo de texto Estilo de texto Estilo de texto Estilo de texto Estilo de textoFrac 1 + Frac 4 + Frac 1 + Frac 5 + Frac 7 + Frac 2. | T | A143298 | [1;66,1,12,1,2,1,4,2,1,3,3,1,4,1,56,2,2,11,...] | |
2.62205755429211981046483958989111941 | Lemniscata constante | ϖ | π G = 4 2 π ( 1 4 ! ) 2 {\i1}displaystyle {\i},{G}=4{\i1}sqrt {\i}frac {\i},(1 4 !),(1 4 {\i1}frac {\i}! | 4 sqrt(2/pi) (1/4!)^2 | T | A062539 | [2;1,1,1,1,1,4,1,2,5,1,1,1,14,9,2,6,2,9,4,1,...] |
0.83462684167407318628142973279904680 | Constante de Gauss | G estilo de jogo | 1 a g m ( 1 , 2 ) = 4 2 ( 1 4 ! ) 2 π 3 / 2 A g m : A r i t h m e t i c - g e o m e t r i c m e a n {\i1}displaystyle {\i}{\i1}displaystyle {\i1}{\i1}Agm:{\i1}Aritmética-geométrica;média}{\i}{\i1}frac | (4 sqrt(2)(1/4!)^2)/pi^(3/2) | T | A014549 | [0;1,5,21,3,4,14,1,1,1,1,1,3,1,15,1,3,7,1,...] |
1.01734306198444913971451792979092052 | Zeta(6) | ζ ( 6 ) {\i1}displaystyle {\i1}zeta (6)} | π 6 945 = ∏ n = 1 ∞ 1 1 1 - p n - 6 p n : p r i m o = 1 1 1 - 2 - 6 ⋅ 1 1 1 - 3 - 6 ⋅ 1 1 1 - 5 - 6 . . estilo de jogo {\i}{945}=prod _{n=1}^{\i1}{p_{n}{n}{p_n\1° de abril 1° de abril 3° de abril 6° de abril 1° de abril 1° de abril 1° de abril 2° de abril 6° de abril 1° de abril 2° de abril 1° de abril 1° de abril 3° de abril 6° de abril 6° de abril 6° de abril.. } | Prod[n=1 a ∞] {1/(1-ithprime(n)^-6)} | T | A013664 | [1;57,1,1,1,15,1,6,3,61,1,5,3,1,6,1,3,3,6,1,...] |
0,60792710185402662866327677925836583 | Constante de Hafner-Sarnak-McCurley | 1 ζ ( 2 ) {\frac {1}{\zeta (2)}}{\frac {\frac }{\frac {1}{\frac {2}} | \esquerda(1) esquerda(1) esquerda(2) direita(1) esquerda(3) direita(2) esquerda(1) esquerda(5) direita(2) pontos(1) | Prod{n=1 a ∞} (1-1/ithprime(n)^2) | T | A059956 | [0;1,1,1,1,4,2,4,7,1,4,2,3,4,10,1,2,1,1,1,...] |
1.11072073453959156175397024751517342 | A proporção de um quadrado e círculos circunscritos ou inscritos | π 2 2 2 {\i1}displaystyle {\i}{\i1}2 {\i1}frac {\i}{\i1}2}}}}} | ∑ n = 1 ∞ ( - 1 ) ⌊ n - 1 2 ⌋ 2 n + 1 = 1 1 1 + 1 3 - 1 5 - 1 7 + 1 9 + 1 11 - ... {\i1}sum _{\i=1}^{\i1}frac {\i}{\i}(-)1) andar de frente 1) andar de frente 1) andar de frente 1) andar de frente 2) andar de frente 1) andar de frente 1) andar de frente 1) andar de frente 3) andar de frente 1) andar de frente 5) andar de frente 1) andar de frente 7) andar de frente 1) andar de frente 9) andar de frente 11) andar de frente 11) andar de frente 11) | sum[n=1 a ∞]{(-1)^(floor((n-1)/2))/(2n-1)} | T | A093954 | [1;9,31,1,1,17,2,3,3,2,3,1,1,2,2,1,4,9,1,3,...] |
2.80777024202851936522150118655777293 | constante de Fransén-Robinson | F estilo de jogo | ∫ 0 ∞ 1 Γ ( x ) d x . = e + ∫ 0 ∞ e - x π 2 + ln 2 x d x {\i1}{\i1}{\i1}{\i1}d x x x x x x x x x x x x x x | N[int[0 a ∞] {1/Gamma(x)}] | T | A058655 | [2;1,4,4,1,18,5,1,3,4,1,5,3,6,1,1,1,5,1,1,1...] |
1.64872127070012814684865078781416357 | Raiz quadrada do número e | e estilo de jogo | ∑ n = 0 ∞ 1 2 n n n ! = ∑ n = 0 ∞ 1 ( 2 n ) ! ! = 1 1 1 + 1 2 + 1 8 + 1 48 + ⋯ {\i1}sum _{\i=0}^{\i}{\i1}{\i1}{\i1}{\i1}{\i}n!{\i}=sum _{\i=0}^{\i}{\i}{\i1}(2n)!!{\i}={\i1}+{\i}frac {\i}{\i}+{\i}frac {\i}{\i}{\i}+{\i}frac {\i}{\i}{\i}{\i}{\i1}{\i1}{\i1}+frac | soma[n=0 a ∞]{1/(2^n n!)} | T | A019774 | [1;1,1,1,5,1,1,1,9,1,1,13,1,1,1,17,1,1,1,21,1,1,1,...] |
i | i estilo de jogo | - 1 = ln ( - 1 ) π e i π = - 1 {\i1}{\i1}={\i1}frac {\i}{\i1}qquadad {\i}qquad {\i}mathrm 1 | sqrt(-1) | ||||
262537412640768743.999999999999250073 | Constante Hermite-Ramanujan | R estilo de jogo | e π 163 e^{\i}displaystyle e^{\i ^sqrt {\i}{163}}}} | e^(π sqrt(163)) | T | A060295 | [262537412640768743;1,1333462407511,1,8,1,1,5,...] |
4.81047738096535165547303566670383313 | John constante | γ | i i i = i - i = i 1 i = ( i i i ) - 1 = e π 2 {\i} {\i}=i^{\i}=i^{\i}=i^{\i}=i^{\i}=(i^{\i})^(i^{\i}=e^{\i}{\i} ^frac | e^(π/2) | T | A042972 | [4;1,4,3,1,1,1,1,1,1,1,1,7,1,20,1,3,6,10,3,...] |
4.53236014182719380962768294571666681 | Constante de Van der Pauw | α | π l n ( 2 ) = ∑ n = 0 ∞ 4 ( - 1 ) n 2 n + 1 ∑ n = 1 ∞ ( - 1 ) n + 1 n = 4 1 - 4 3 + 4 5 - 4 7 + 4 9 - 1)^1}{2n+1}{2n+1}}{n}}}}={frac {4}{1}{3}{3}{4}{4}{5}{5}{5}-Pontos de Fr Fr Fr Fr Fr Fr Fr Fr Fr Fr Fr Fr Fr Fr Fr Fr Fr Fr Fr Fr 1 | π/ln(2) | T | A163973 | [4;1,1,7,4,2,3,3,1,4,1,1,4,7,2,3,3,12,2,1,...] |
0.76159415595576488811945828260479359 | Tangente hiperbólica (1) | o 1 estilo de jogo,1 | e - 1 e e + 1 e = e 2 - 1 e 2 + 1 estilo de jogo {\i1}}{e+{\i1}{e}}}}={e^{2}-1}{e^{2}+1}}}e | (e-1/e)/(e+1/e) | T | A073744 | [0;1,3,5,7,9,11,13,15,17,19,21,23,25,27,...] |
0.69777465796400798200679059255175260 | Constante de fracionamento contínuo | C C C F {\i1}_{CF}}} C C F {\i1}- estilo de jogo | J 1 ( 2 ) J 0 ( 2 ) F u n c ç ã o J k ( ) B e s s s e l = ∑ n = 0 ∞ n n n ! n ! n ! ∑ n = 0 ∞ 1 n ! n ! n ! = 0 1 + 1 1 1 + 2 4 + 3 36 + 4 576 + ... 1 1 + 1 1 1 + 1 4 + 1 36 + 1 576 + ... {\\i1}displaystyle {\i1}displaystyle J_J_{k}(){Bessel}{\i1}{Função}{\i}{J_{1}(2)}{J_{0}(2)}}}}={\i}{\i1}frac {\i}sum Limites _\i}{n=0}^^^frac {\i}{\i}{n!n!}}}}={\frac {\frac {\0}{1}+{\frac {1}{1}+{\frac {2}{4}+{\frac {3}{36}+{\frac {4}{576}+dots {1}{1}frac {1}+{1}frac {1}+{1}frac {4}+{1}frac {1}+{1}frac {36}+{1}frac {1}+{576}}+dots {1}}} | (soma {n=0 a inf} n/(n!n!)) /(soma {n=0 a inf} 1/(n!n!)) | A052119 | [0;1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,...] | |
0.36787944117144232159552377016146086 | Constante Inversa Napier | 1 e e estilo de jogo 1 efrac | ∑ n = 0 ∞ ( - 1 ) n n n ! = 1 0 ! - − 1 1 ! + 1 2 ! - − 1 3 ! + 1 4 ! - − 1 5 ! | soma[n=2 a ∞]{(-1)^n/n/n!} | T | A068985 | [0;2,1,1,2,1,1,1,4,1,1,1,6,1,1,1,8,1,1,1,10,1,1,1,12,...] |
2.71828182845904523536028747135266250 | Constante Napier | e e e estilo de jogo | ∑ n = 0 ∞ 1 n ! = 1 0 ! + 1 1 + 1 2 ! + 1 3 ! + 1 4 ! + 1 5 ! + ⋯displaystyle {\i1}sum _{\i=0}^{\i}{\i1}{\i1}{\i1}{\i0!}}+{\i1}frac {\i}+frac {\i}{\i1}{\i1}{\i1}+frac {\i}+frac {\i}{\i1}{\i1}{\i}{\i1!4!}+frac {\i}{\i}{\i1}{\i1}{\i1!5!{\i}+cdots | Soma[n=0 a ∞]{1/n!} | T | A001113 | [2;1,2,1,1,4,1,1,1,6,1,1,8,1,1,1,10,1,1,1,12,1,...] |
0.49801566811835604271369111746219809 | Fatorial do i | i ! estilo de jogo i! } | Γ ( 1 + i ) = i Γ ( i ) {\i1+i ) Gamma (1+i)=i,Gamma (i)} | Gama(1+i) | A212877 | [0;6,2,4,1,8,1,46,2,2,3,5,1,10,7,5,1,7,2,...] | |
0.43828293672703211162697516355126482 | Infinito | ∞ i {\i1}i^^i^displaystyle {\i} | lim n → ∞ ∞ n i = lim n → ∞ ∞ i i ⋅ ⋅ i ⏟ n {\i1}lim _{\i}displaystyle ^{\i}{\i}}}}} _{n}} | i^i^i^.... | A077589 |
| |
0.56755516330695782538461314419245334 | Módulo de | ∞ i | | {\i} {\i} {\i} {\i1}displaystyle | lim n → ∞ ∞ | n i | lim n → ∞ ∞ i i i ⋅ ⋅ i ⏟ n |displaystyle |lim _{n |to |infty |{n}i=esquerda|lim _{n |to |infty |{n |displaystyle ^{i^{n ^cdot ^{n ^cdot ^{i}}}}} Certo. | Mod(i^i^i^i^...) | A212479 | [0;1,1,3,4,1,58,12,1,51,1,4,12,1,1,2,2,3,...] | |
0.26149721284764278375542683860869585 | Meissel-Mertens constante | M {\a1}displaystyle M | lim n → ∞ ( ∑ p ≤ n 1 p - ln ( ln ( n ) ) ) estilo de jogolim, lim lima, seta de direita, esquerda, som, esquerda, direita, ..... p: primes | A077761 | [0;3,1,4,1,2,5,2,1,1,1,1,13,4,2,4,2,1,33,...] | ||
1.9287800... | Wright constante | ω | estilo de jogo do esquadrão... ⌊ 2 ω ⌋ ⌋ Estilo de exibição Estilo de exibição Estilo de exibição Estilo de exibição Estilo de exibição Estilo de exibição Estilo de exibição Estilo de exibição Estilo de exibição Estilo de exibição Estilo de exibição Estilo de exibição Estilo de exibição Estilo de exibição Estilo de exibição Estilo de exibição Estilo de exibição Estilo de exibição Estilo de exibição Estilo de exibição Estilo de exibição Estilo de exibição Estilo de exibição Estilo de exibição Estilo de exibição Estilo de exibição Estilo de exibição Estilo de exibição ⌊ 2 2 2 ω ⌋ ⌋ ⌋ estilo de exibição piso esquerdo 2 ^2 ^2 ^2 ^2 ^2 ^2 ^mega piso direito ^ =16381, ... pontos estilo de exibição | A086238 | [1; 1, 13, 24, 2, 1, 1, 3, 1, 1, 3] | ||
0.37395581361920228805472805434641641 | Artin constante | C A r t i n ç ã o C_{Artin}} | ∏ n = 1 ∞ ( 1 - 1 p n ( p n - 1 ) ) estilo de jogoprod _1 {n=1}^infty {1}{p_frac {1}{p_{n}(p_{n}-1)right)} ...... pn: primo | T | A005596 | [0;2,1,2,14,1,1,2,3,5,1,3,1,5,1,1,2,3,5,46,...] | |
4.66920160910299067185320382046620161 | Constante de Feigenbaum δ | δ | lim n → ∞ ∞ x n + 1 - x n x n + 2 - x n + 1 x ∈ ( 3 , 8284 ; 3 , 8495 ) {\i1}{\i1}-x_{n+1}-x_{n+2}-x_{n+1}}-qququad estilo de escrita x\i (3,8284;{n,3,8495)} x n + 1 = a x n ( 1 - x n ) o x n + 1 = um pecado ( x n ) {\i1}{\i1}estilo de escrita x_{n+1}==,ax_{n}(1-x_{n})|quad {o}{o}quad x_{n+1}=,a{n+1}sin(x_{n})} | T | A006890 | [4;1,2,43,2,163,2,3,1,1,2,5,1,2,3,80,2,5,...] | |
2.50290787509589282228390287321821578 | Constante de Feigenbaum α | α | lim n → ∞ d n d n + 1 {\i1}displaystyle {\i}{\i1}{\i1}frac {d_{\i}{d_{n+1}}}} | T | A006891 | [2;1,1,85,2,8,1,10,16,3,8,9,2,1,40,1,2,3,...] | |
5.97798681217834912266905331933922774 | Hexagonal Madelung Constante 2 | H 2 ( 2 ) {\\i1}(2)}displaystyle H_{\i}(2)} | π ln ( 3 ) 3 {\i1}displaystyle {\i} {\i(3)sqrt {\i}} | Pi Log[3]Sqrt[3] | T | A086055 | [5;1,44,2,2,1,15,1,1,12,1,65,11,1,3,1,1,...] |
0.96894614625936938048363484584691860 | Beta(3) | β ( 3 ) {\i1}displaystyle {\i}beta (3)} | π 3 32 = ∑ n = 1 ∞ - 1 n + 1 ( - 1 + 2 n ) 3 = 1 1 1 3 - 1 3 3 + 1 5 3 - 1 7 3 + ... {\\i1}{\i1}=sum _{\i=1}{\i}{\i}-1^{n+1}{(-1+2n)^{3}}={frac {1}{1^{3}}{-}frac {1}{3^{3^{3}}{++}{1}frac {5^{3}}{--}frac {1}{7^{3}}{+2}}}{+dots | Soma[n=1 a ∞]{(-1)^(n+1)/(-1+2n)^3} | T | A153071 | [0;1,31,4,1,18,21,1,1,2,1,2,1,3,6,3,28,1,...] |
1.902160583104 | Constante de Brun 2 = Σ inverso de primes gêmeos | B 2 {\i1}B_2 estilo de jogo B_,2} | ∑ ( 1 p + 1 p + 2 ) p , p + 2 : p r i m o s = ( 1 3 + 1 5 ) + ( 1 5 + 1 7 ) + ( 1 11 + 1 13 ) + ... {\i1}estilo de apresentação {\i1}sum {\i1,},p+2\(1),primos (1) + (1) + (1) + (1) + (2)) =(1) + (3) + (1) + (5) + (1) + (5) + (5) + (7) + (1) + (1) + (1) + (11) + (1) + (13) pontos | A065421 | [1; 1, 9, 4, 1, 1, 8, 3, 4, 4, 2, 2] | ||
0.870588379975 | Constante Brun 4 = Σ inverso de twin prime | B 4 {\i1}estilo de exibição B_{\i} | ( 1 5 + 1 7 + 1 11 + 1 13 ) p , p + 2 , p + 4 , p + 6 : p r i m e s + ( 1 11 + 1 13 + 1 17 + 1 19 ) + ... {\i1}displaystyle {\i} {\i1,\i+2,\i+4,\i+6\esquerda(1) + esquerda(5) + esquerda(1) + esquerda(1) + esquerda(1) + esquerda(1) + esquerda(1) + esquerda(1) + esquerda(1) + esquerda(1) + esquerda(1) + esquerda(1) + esquerda(1) + esquerda(1) + esquerda(1) + esquerda (1) + esquerda (1) + esquerda (1) + esquerda (1) + esquerda (1) + esquerda (1) + esquerda (1) + esquerda (1) + esquerda (1) + direita (1) + pontos | A213007 | [0; 1, 6, 1, 2, 1, 2, 956, 3, 1, 1] | ||
22.4591577183610454734271522045437350 | pi^e | π e ^pisplaystyle | π e ^pisplaystyle | pi^e | A059850 | [22;2,5,1,1,1,1,1,3,2,1,1,3,9,15,25,1,1,5,...] | |
3.14159265358979323846264338327950288 | Pi, Arquimedes constante | π | lim n → ∞ 2 n 2 - 2 + 2 + ⋯ + 2 ⏟ n {\i1}lim _{\i1}displaystyle {\i},2^{\i}underbrace {\i}{\i1}sqrt {\i}2-{\i1}2+{\i}sqrt {\i}2+dots +{\i}{\i}COPY2 _{n}} | Soma[n=0 a ∞]{(-1)^n 4/(2n+1)} | T | A000796 | [3;7,15,1,292,1,1,1,2,1,3,1,14,...] |
0.06598803584531253707679018759684642 | e - e ^{-e}} | e - e ^{-e}} ... Limite inferior de Tetração | T | A073230 | [0;15,6,2,13,1,3,6,2,1,1,5,1,1,1,9,4,1,1,1,...] | ||
0.20787957635076190854695561983497877 | i^i | i i {\i}displaystyle i^{i} | e - π 2 e^frac ^frac ^2 | e^(-pi/2) | T | A049006 | [0;4,1,4,3,1,1,1,1,1,1,1,1,7,1,20,1,3,6,10,...] |
0.28016949902386913303643649123067200 | Constante Bernstein | β | 1 2 π {\frac {1}{2\sqrt {\pi }}}}} | T | A073001 | [0;3,1,1,3,9,6,3,1,3,13,1,16,3,3,4,…] | |
0.28878809508660242127889972192923078 | Flajolet e Richmond | Q {\i1}estilo de jogo Q | ∏ n = 1 ∞ ( 1 - 1 2 n ) = ( 1 - 1 2 1 ) ( 1 - 1 2 2 2 ) ( 1 - 1 2 3 ) ... {\i1}prod _{n=1}^{\i1}esquerda(1-esquerda(1) esquerda(1) esquerda(2) direita(2) direita(2) esquerda(1) esquerda(2) direita(3) pontos | prod[n=1 a ∞]{1-1/2^n} | A048651 | ||
0.31830988618379067153776752674502872 | Inverso de Pi, Ramanujan | 1 π {\i1}displaystyle {\i} {\i1} | 2 2 9801 ∑ n = 0 ∞ ( 4 n ) ! ( 1103 + 26390 n ) ( n ! ) 4 396 4 n {\\i1}{2\i1}{2\i1}{9801}}sum _{n=0}^{\i1}{\i1}frac {(4n)!(1103+26390n)}{(n!)^{4}396^{4n}}}} | T | A049541 | [0;3,7,15,292,1,1,1,2,1,3,1,14,2,1,1,...] | |
0.47494937998792065033250463632798297 | Weierstraß constante | W W E {{_WE}} W W_{_WE {_WE}} | e π 8 π 4 ∗ 2 3 / 4 ( 1 4 ! ) 2 {\i1}{e^frac {\i}{8}{sqrt {\i}}{4*2 {3/4}{(1}frac {4}!)^{2}}}}} | (E^(Pi/8) Sqrt[Pi])/(4 2^(3/4) (1/4)!^2) | T | A094692 | [0;2,9,2,11,1,6,1,4,6,3,19,9,217,1,2,...] |
0.56714329040978387299996866221035555 | Constante Ômega | Ω {\i1}displaystyle {\i1}Omega | W ( 1 ) = ∑ n = 1 ∞ ( - n ) n - 1 n ! = 1 - 1 + 3 2 - 8 3 + 125 24 - ... W(1)=sum _{n=1}^{\i1}{\i1}{\i1}frac ^{\i}{n-1}{n!}=1{-}1{+}{\i}frac {3}{-}{\i}{\i}{\i}{\i}{\i}{\i}{\i}{\i}{\i}{\i}{\i}{\i}{\i}{\i}{\i}{\i}{\i}{\i1}frac | soma[n=1 a ∞]{(-n)^(n-1)/n!} | T | A030178 | [0;1,1,3,4,2,10,4,1,1,1,1,2,7,306,1,5,1,...] |
0.57721566490153286060651209008240243 | γ | - ψ ( 1 ) = ∑ n = 1 ∞ ∑ k = 0 ∞ ( - 1 ) k 2 n + k {\i1}sum _{n=1}^{n=1}sum _{k=0}^{\i}{\i}{(-1)^{k}}{2^{n}+k}}} | soma[n=1 a ∞]|sum[k=0 a ∞]{((-1)^k)/(2^n+k)} | ? | A001620 | [0;1,1,2,1,2,1,4,3,13,5,1,1,8,1,2,...] | |
0.60459978807807261686469275254738524 | Série Dirichlet | π 3 3 3 {\i1}displaystyle {\i}{3{\i1}displaystyle {3}}}}} | ∑ n = 1 ∞ 1 n ( 2 n n ) = 1 - 1 2 + 1 4 - 1 5 + 1 7 - 1 8 + ⋯ {\\i1}{\i1}{\i1}{\i1}frac {\i}{\i1}{\i1}n{\i}- 1Frac 1 + Frac 4 + Frac 1 + Frac 5 + Frac 7 + Frac 1 + Frac 8 + Pontos | Soma[1/(n Binomial[2 n, n]), {n, 1, ∞}] | T | A073010 | [0;1,1,1,1,8,10,2,2,3,3,1,9,2,5,4,1,27,27,...] |
0.63661977236758134307553505349005745 | 2/Pi, François Viète | 2 π π | 2 2 ⋅ 2 + 2 2 ⋅ 2 + 2 + 2 2 ⋯ {\i1}displaystyle {\i} {\i1}cdot {\i1}frac {\i}cdot {\i}frac {\i}2+{\i}cdot {\i}cdot {\i1}frac {\i}2+{\i1}cdot {\i1}frac {\i}2+{\i1}cdot | T | A060294 | [0;1,1,1,3,31,1,145,1,4,2,8,1,6,1,2,3,1,4,...] | |
0.66016181584686957392781211001455577 | Constante Twin prime | C 2 {\\i1}- estilo de jogo C_{\i}} | ∏ p = 3 ∞ p ( p - 2 ) ( p - 1 ) 2 {\\i1}{\i1}{\i1}{\i1}{\i1}{\i1}(p - 2)^2}}}} | prod[p=3 a ∞]{p(p-2)/(p-1)^2 | A005597 | [0;1,1,1,16,2,2,2,2,1,18,2,2,11,1,1,2,4,1,...] | |
0.66274341934918158097474209710925290 | Laplace Limite constante | λ | A033259 | [0;1,1,1,27,1,1,1,8,2,154,2,4,1,5,...] | |||
0.69314718055994530941723212145817657 | Logaritmo de 2 | L n ( 2 ) Ln(2)}displaystyle Ln(2)} | ∑ n = 1 ∞ ( - 1 ) n + 1 n = 1 1 1 1 - 1 2 + 1 3 - 1 4 + 1 5 - ⋯ {\i1}sum _{\i=1}^{\i1}frac {\i}{\i}frac {\i}1)^{n+1}{n+1}=frac {1}-frac {1}-{2}+frac {1}-{3}-frac {1}-{4}+frac {1}+frac {1}-cdots {5}- | Soma[n=1 a ∞]{(-1)^(n+1)/n} | T | A002162 | [0;1,2,3,1,6,3,1,1,2,1,1,1,1,3,10,...] |
0.78343051071213440705926438652697546 | Sophomore's Dream 1 J.Bernoulli | I 1 {\a1}displaystyle I_{\a1} | ∑ n = 1 ∞ ( - 1 ) n + 1 n n = 1 - 1 2 2 + 1 3 3 - 1 4 4 + 1 5 5 + ... {\i1}sum _{\i=1}^{\i1}frac {\i}(-)1)^{n+1}{n^{n^{n}}=1-{\frac {1}{2^{2}}+{\frac {1}{3^{3}}-{frac {1}{4^{4}}}+{\frac {1}{5^{5}}+dots {5}} | Soma[ -(-1)^n /n^n] | T | A083648 | [0;1,3,1,1,1,1,1,1,2,4,7,2,1,2,1,1,1,...] |
0.78539816339744830961566084581987572 | Dirichlet beta(1) | β ( 1 ) {\i1}displaystyle {\i}beta (1)} | π 4 = ∑ n = 0 ∞ ( - 1 ) n 2 n + 1 = 1 1 1 - 1 3 + 1 5 - 1 7 + 1 9 - ⋯ {\i1}=sum _{\i=0} {\i} {\i1}{\i1}(-)1)^{n}{2n+1}={1}frac {1}-frac {1}{3}+{1}frac {1}- 5}-frac {1}{7}+frac {1}-cdots | Soma[n=0 a ∞]{(-1)^n/(2n+1)} | T | A003881 | [0; 1,3,1,1,1,15,2,72,1,9,1,17,1,2,1,5,...] |
0.82246703342411321823620758332301259 | Caixeiro-viajante Nielsen-Ramanujan | π 2 12 = ∑ n = 1 ∞ ( - 1 ) n + 1 n 2 = 1 1 1 2 - 1 2 2 + 1 3 2 - 1 4 2 + 1 5 2 - ... {\i1}{\i1}=sum _{\i1}{\i}{\i1}}(-)1)^{n+1}{n^{2}}={frac {1}{1}{1^{2}}{-}frac {1}{2^{2^{2}}{+}{+}{frac {1}{3^{2}}}{--frac {1}{4^{2}}}{+}{+}{frac {1}{5^{2}}-dots} | Soma[n=1 a ∞]{((-1)^(k+1))/n^2} | T | A072691 | [0;1,4,1,1,1,2,1,1,1,1,3,2,2,4,1,1,1,...] | |
0.91596559417721901505460351493238411 | Constante catalã | C {\i1}displaystyle C | ∑ n = 0 ∞ ( - 1 ) n ( 2 n + 1 ) 2 = 1 1 1 2 - 1 3 2 + 1 5 2 - 1 7 2 + ⋯ {\i1}sum _{\i=0}^{\i}{\i1}frac {\i}(-1)^{(2n+1)^{2}={\i1}-{1^{2}}-{1^{2}}frac {1}{3^{2}}+{2}}frac {1}{5^{2}}-frac {1}-{7^{2}}+cdots | Soma[n=0 a ∞]{(-1)^n/(2n+1)^2} | I | A006752 | [0;1,10,1,8,1,88,4,1,1,7,22,1,2,...] |
1.05946309435929526456182529494634170 | Relação da distância entre os semi-tons | 2 12 Estilo de exibição | 2 12 Estilo de exibição | 2^(1/12) | I | A010774 | [1;16,1,4,2,7,1,1,2,2,7,4,1,2,1,60,1,3,1,2,...] |
1,.08232323371113819151600369654116790 | Zeta(04) | ζ 4 {\i1}displaystyle {\i1} | π 4 90 = ∑ n = 1 ∞ 1 n 4 = 1 1 1 4 + 1 2 4 + 1 3 4 + 1 4 4 + 1 5 4 + ... {\i1}{90}}==sum _{n=1}^{\i1}^sum Frac 1 {1}{n^ 4}}=frac 1 {1}{1^ 4}}+frac 1 {2 {4}}+frac 1 {3 {4}}+frac 3 {4 {4 }}+frac 1 {4 {4 {4 {4 }}}+frac 1 {5 {4 {4}}+dots | Soma[n=1 a ∞]{1/n^4} | T | A013662 | [1;12,6,1,3,1,4,183,1,1,2,1,3,1,1,5,4,2,7,...] |
1.1319882487943 ... | Viswanaths constante | C V i {\i } C_{Vi} | lim n → ∞ a n | a n | 1 n {\i1}lim _{\i1}a_{\i}^frac {\i}}{\i1} | A078416 | [1;7,1,1,2,1,3,2,1,2,1,8,1,5,1,1,1,9,1,...] | ||
1.20205690315959428539973816151144999 | Constante Apéry | ζ ( 3 ) {\i1}displaystyle {\i1}zeta (3)} | ∑ n = 1 ∞ 1 n 3 = 1 1 1 3 + 1 2 3 + 1 3 3 3 + 1 4 3 + 1 5 3 + ⋯ {\i1}sum _{\i=1}^{\i1}frac 1 {1}{n^{3}==frac {1}{1^{3}}+frac {1}{2^{3}}+frac {1}{3^{3}}+frac {1}{3^{3}}+frac {1}{4^{3}}+frac {1}{5^{3}}+cdots\! } | Soma[n=1 a ∞]{1/n^3} | I | A010774 | [1;4,1,18,1,1,1,4,1,9,9,2,1,1,1,2,...] |
1.22541670246517764512909830336289053 | Gama(3/4) | Γ ( 3 4 ) Gamma (3) | ( − 1 + 3 4 ) ! Esquerda(-1++fraca(3) direita)! } | (-1+3/4)! | T | A068465 | [1;4,2,3,2,2,1,1,1,2,1,4,7,1,171,3,2,3,1,1,...] |
1.23370055013616982735431137498451889 | Constante favorita | 3 4 ζ ( 2 ) {\i1}displaystyle {\i1}tfrac {\i}{\i1}{\i1}(2) | π 2 8 = ∑ n = 0 ∞ 1 ( 2 n - 1 ) 2 = 1 1 1 2 + 1 3 2 + 1 5 2 + 1 7 2 + ... {\i1}{\i1}{\i1}sum _{\i=0} {\i1}{\i1}{\i1}(2n-}}frac {\i}(2n-)1)^{2}={1}{1^{2}}+{2}frac {1}{3^{2}}+{2}}frac {1}{5^{2}}+frac {1}+frac {1}{7^{2}}+dots | soma[n=1 a ∞]{1/((2n-1)^2)} | T | A111003 | [1;4,3,1,1,2,2,5,1,1,1,1,2,1,2,1,10,4,3,1,1,...] |
1.25992104989487316476721060727822835 | Raiz de cubo de 2, constante Delian | 2 3 Estilo de exibição | 2 3 Estilo de exibição | 2^(1/3) | I | A002580 | [1;3,1,5,1,1,4,1,1,8,1,14,1,10,...] |
1.29128599706266354040728259059560054 | Sophomore's Dream 2 J.Bernoulli | I 2 {\i1}displaystyle I_{\i} | ∑ n = 1 ∞ 1 n n = 1 + 1 2 2 + 1 3 3 + 1 4 4 + 1 5 5 + 1 6 6 + ... {\i1}sum _{\i=1}^{\i1}frac 1 {1}{n^{n^{n}}=1+{\frac {1}{2 ^{2}}+{\frac {1}{3^{3}}+{\frac {1}{4^{4}}+{\frac {1}{5^{5}}}+{\frac {1}{6^{6}}+dots {6}} | Soma[1/(n^n]), {n, 1, ∞}] | A073009 | [1;3,2,3,4,3,1,2,1,1,6,7,2,5,3,1,2,1,8,1,...] | |
1.32471795724474602596090885447809734 | Número plástico | ρ {\i1}displaystyle {\i1}rho | 1 + 1 + 1 + 1 + ⋯ 3 3 3 3 {\sqrt[3}]{1+{\sqrt[3}]{1+{\sqrt[3}]{1+{\sqrt[3}]{1+{\sqrt[3}]{1+{\sqrt[3}]{1+cdots }}}}}}}}} | I | A060006 | [1;3,12,1,1,3,2,3,2,4,2,141,80,2,5,1,2,8,...] | |
1.41421356237309504880168872420969808 | Raiz quadrada de 2, constante Pythagoras | 2 Estilo de jogo 2 | ∏ n = 1 ∞ 1 + ( - 1 ) n + 1 2 n - 1 = ( 1 + 1 1 ) ( 1 - 1 3 ) ( 1 + 1 5 ) . . estilo de jogo _1 {n=1}^1+frac {(-1)^{n+1}{2n-1}=esquerda(1{+}{1}frac {1}direita){1 esquerda(1{+}{1}direita){1}esquerda(1{-}frac {1}{3}direita){1{+}esquerda(1{+}frac {1}{5}direita)... } | prod[n=1 to ∞]{1+(-1)^(n+1)/(2n-1)} | I | A002193 | [1;2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,...] |
1.44466786100976613365833910859643022 | Número do Steiner | e 1 e ^frac e^frac e^frac {1}}{e | e 1 / e ^{1/e}} ... Limite Superior de Tetração | A073229 | [1;2,4,55,27,1,1,16,9,3,2,8,3,2,1,1,4,1,9,...] | ||
1.53960071783900203869106341467188655 | A constante de Lieb's Square Ice | W 2 D {\i1}- Estilo de exibição W_{2D}} | lim n → ∞ ( f ( n ) ) n - 2 = ( 4 3 ) 3 2 {\i1}lim _{\i1}(f(n))^{n^{-2}=esquerda(frac {4}{3}{3}direita)^{3 {2}}frac | (4/3)^(3/2) | I | A118273 | [1;1,1,5,1,4,2,1,6,1,6,1,2,4,1,5,1,1,2,...] |
1.57079632679489661923132169163975144 | Produto Wallis | π / 2 {\i/2}displaystyle {\i} | ∏ n = 1 ∞ ( 4 n 2 4 n 2 - 1 ) = 2 1 ⋅ 2 3 ⋅ 4 3 ⋅ 4 5 ⋅ 6 5 ⋅ 6 7 ⋅ 8 7 ⋅ 8 9 ⋯ {\i1}{\i1}{\i1}-1) Certo)=frac 2)cdot 2)frac 3)cdot 4) 3)cdot 4) 5)cdot 5)cdot 6)cdot 6)frac 7)cdot 8)cdot 7)cdot 8)frac 9)cdots | T | A019669 | [1;1,1,3,31,1,145,1,4,2,8,1,6,1,2,3,1...] | |
1.60669515241529176378330152319092458 | Erdős- constante de Borwein | E B {\i1}E B {\i1}displaystyle E_{\i} | ∑ n = 1 ∞ 1 2 n - 1 = 1 1 1 1 + 1 3 + 1 7 + 1 15 + ⋯ {\i1}{\i1}{\i1}{\i1}frac {\i1}{\i1}{\i1}{\i1}+{\i}frac {\i}{\i1}{\i1}+{\i1}{\i1}{\i1}{\i1}+frac {\i}{\i1}{\i1}{\i1}+\i}frac {\i}{\i1}}frac {15}+cdots } | soma[n=1 a ∞]{1/(2^n-1)} | I | A065442 | [1;1,1,1,1,5,2,1,2,29,4,1,2,2,2,2,6,1,7,1,...] |
1.61803398874989484820458633436563812 | Phi, Razão de Ouro | φ φ | 1 + 5 2 = 1 + 1 + 1 + 1 + ⋯ {\frac {1+{\sqrt {5}}}{2}={\sqrt {1+{\sqrt {1+{\sqrt {1+{\sqrt {1+{\sqrt {1+\sqrt {1+cdots }}}}}}}}} | (1+5^(1/2))/2 | I | A001622 | [0;1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,...] |
1.64493406684822643647241516664602519 | Zeta(2) | ζ ( 2 ) {\i1}displaystyle {\i1}zeta (2){\i} | π 2 6 = ∑ n = 1 ∞ 1 n 2 = 1 1 1 2 + 1 2 2 + 1 3 2 + 1 4 2 + ⋯ {\\i1}{\i1}=sum 1ª parte da Frrac 1ª parte da Frrac 2ª parte da Frrac 1ª parte da Frrac 2ª parte da Frrac 1ª parte da Frrac 2ª parte da Frrac 2ª parte da Frrac 1ª parte da Frrac 3ª parte da Frrac 2ª parte da Frrac 1ª parte da Frrac 4ª parte da Frrac 2ª parte da Frrac | Soma[n=1 a ∞]{1/n^2} | T | A013661 | [1;1,1,1,4,2,4,7,1,4,2,3,4,10 1,2,1,1,1,15,...] |
1.66168794963359412129581892274995074 | A constante de recorrência quadrática de Somos | σ {\i1}displaystyle {\i1}sigma | 1 2 3 ⋯ = 1 1 / 2 ; 2 1 / 4 ; 3 1 / 8 ⋯ {\i1}displaystyle {\i} {\i1}sqrt {\i1}2{\i1}sqrt {\i1}cdots }}}}}}=1^{1/2};2^{1/4};3^{1/8}cdots {\i} | T | A065481 | [1;1,1,1,21,1,1,1,6,4,2,1,1,2,1,3,1,13,13,...] | |
1.73205080756887729352744634150587237 | Constante de Theodorus | 3 Estilo de jogo 3 | 3 Estilo de jogo 3 | 3^(1/2) | I | A002194 | [1;1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,...] |
1.75793275661800453270881963821813852 | Número Kasner | R {\a10}displaystyle R | A072449 | [1;1,3,7,1,1,1,2,3,1,4,1,1,2,1,2,20,1,2,2,...] | |||
1.77245385090551602729816748334114518 | Constante Carlson-Levin | Γ ( 1 2 ) Gamma (1) | π = ( − 1 2 ) ! Esquerda(-frac {1}{2}{2}direita)! } | sqrt (pi) | T | A002161 | [1;1,3,2,1,1,6,1,28,13,1,1,2,18,1,1,1,83,1,...] |
2.29558714939263807403429804918949038 | Constante parabólica universal | P 2 {\i1}estilo de exibição P_ 2 | ln ( 1 + 2 ) + 2 {\i1+{\i1}(1+{\iqrt {\i})+{\iqrt {\iqrt {\i}} | ln(1+sqrt 2)+sqrt 2 | T | A103710 | [2;3,2,1,1,1,1,3,3,1,1,4,2,3,2,7,1,6,1,8,...] |
2.30277563773199464655961063373524797 | Número de Bronze | σ R r r {\i1}displaystyle {\i}sigma _{\i1} | 3 + 13 2 = 1 + 3 + 3 + 3 + 3 + 3 + ⋯ {\frac {3+{\sqrt {13}}}{2}=1+{\sqrt {3+{\sqrt {3+{\sqrt {3+{\sqrt {3+{\sqrt {3+cdots }}}}}}}}} | (3+sqrt 13)/2 | I | A098316 | [3;3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,...] |
2.37313822083125090564344595189447424 | Constante de Lévy2 | 2 ln γ {\i1}displaystyle 2\i,{\i,{\i}gamma | π 2 6 ln ( 2 ) {\i1} {6 6 ln ( 2 ) {6} {6ln(2)}}displaystyle {\i} | Pi^(2)/(6*ln(2)) | T | A174606 | [2;2,1,2,8,57,9,32,1,1,2,1,2,1,2,1,2,1,3,2,...] |
2.50662827463100050241576528481104525 | raiz quadrada de 2 pi | 2 π π | sqrt (2*pi) | T | A019727 | [2;1,1,37,4,1,1,1,1,9,1,1,2,8,6,1,2,2,1,3,...] | |
2.66514414269022518865029724987313985 | Constante de Gelfond-Schneider | G G S {\i1}displaystyle G_{\i}} | 2 2 ^sqrt 2^sqrt 2^sqrt 2^sqrt 2^sqrt 2^sqrt 2^sqrt 2^sqrt 2^sqrt 2^sqrt | 2^sqrt{2} | T | A007507 | [2;1,1,1,72,3,4,1,3,2,1,1,1,14,1,2,1,1,3,1,...] |
2.68545200106530644530971483548179569 | Constante Khintchin | K 0 {\i1}K 0 {\i1}displaystyle K_{\i} | ∏ n = 1 ∞ [ 1 + 1 n ( n + 2 ) ] ln n / ln 2 {\i1}prod _{\i=1}^{\i1+{\i1}esquerda[1 + 1 n ( n + 2 ) ] ln n / ln 2 ^ln n/ln 2}} | prod[n=1 a ∞]{(1+1/(n(n+2)))^((ln(n)/ln(2))} | ? | A002210 | [2;1,2,5,1,1,2,1,1,3,10,2,1,3,2,24,1,3,2,...] |
3.27582291872181115978768188245384386 | Constante Khinchin-Lévy | γ | e π 2 / ( 12 ln 2 ) e^{\i} {2}/(12ln 2)}} | e^(\pi^2/(12 ln(2)) | A086702 | [3;3,1,1,1,2,29,1,130,1,12,3,8,2,4,1,3,55,...] | |
3.35988566624317755317201130291892717 | Constante de Fibonacci Recíproca | Ψ | ∑ n = 1 ∞ 1 F n = 1 1 1 + 1 1 1 1 + 1 2 + 1 3 + 1 5 + 1 8 + 1 13 + ⋯ {\i1}sum _{\i=1}^{\i1}frac Frac {1}{1}+frac {1}+frac {1}{1}+frac {1}+frac {2}+frac {1}{3}+frac {1}+frac {5}+frac {1}{8}+frac {1}+frac {1}{13}+cdots {1}} | A079586 | [3;2,1,3,1,1,13,2,3,3,2,1,1,6,3,2,4,362,...] | ||
4.13273135412249293846939188429985264 | Raiz de 2 e pi | 2 e π | 2 e π | sqrt(2e pi) | T | A019633 | [4;7,1,1,6,1,5,1,1,1,8,3,1,2,2,15,2,1,1,2,4,...] |
6.58088599101792097085154240388648649 | Froda constante | 2 e 2^,e | 2 e ^2 e ^2 e ^2 | 2^e | [6;1,1,2,1,1,2,3,1,14,11,4,3,1,1,7,5,5,2,7,...] | ||
9.86960440108935861883449099987615114 | Pi Squared | π 2 {\i1}2 {\i} | 6 ∑ n = 1 ∞ 1 n 2 = 6 1 2 + 6 2 2 2 + 6 3 2 + 6 4 2 + ⋯ {\\i1}{\i1}{\i1}{\i1}{\i1}{\i1}}frac {\i}={\i1}+{\i}frac {\i}+{\i}{\i}+{\i}frac {\i}{\i}{\i1}{\i1}+{\i}frac {\i}{\i}{\i}{\i}+\i}frac {\i} | 6 Soma[n=1 a ∞]{1/n^2} | T | A002388 | [9;1,6,1,2,47,1,8,1,1,2,2,1,1,8,3,1,10,5,...] |
23.1406926327792690057290863679485474 | Constante de Gelfond | e π e^{\i}} | ∑ n = 0 ∞ π n n n ! = π 1 1 1 + π 2 2 ! + π 3 3 ! + π 4 4 ! + ⋯displaystyle ^sum _{n=0}}{\i}{\i}{n!}={\i}{n!{\i}={\i1}{1}+{\i}frac {\i}{2!}+{\i}+frac {\i}{3!{3!}}+{\i}+frac {\i}{4!{4!}+cdots | Soma[n=0 a ∞]{(pi^n)/n!} | T | A039661 | [23;7,9,3,1,1,591,2,9,1,2,34,1,16,1,30,1,...] |
Páginas relacionadas
- Função constante
- Lista de símbolos matemáticos
Bibliografia on-line
- Enciclopédia On-Line de Seqüências Inteiras (OEIS)
- Simon Plouffe, Tabelas de Constantes
- Página de Xavier Gourdon e Pascal Sebah de números, constantes matemáticas e algoritmos
- MathConstants
Perguntas e Respostas
P: O que é uma constante matemática?
R: Uma constante matemática é um número que tem um significado especial para os cálculos.
P: O que é um exemplo de constante matemática?
R: Um exemplo de constante matemática é ً, que representa a relação entre a circunferência de um círculo e seu diâmetro.
P: O valor de ً é sempre o mesmo?
R: Sim, o valor de ً é sempre o mesmo para qualquer circunferência.
P: As constantes matemáticas são números integrais?
R: Não, as constantes matemáticas são geralmente números reais, não integrais.
P: De onde vêm as constantes matemáticas?
R: Constantes matemáticas não provêm de medidas físicas como as constantes físicas provêm.